Skip to main content
Figure 2 | Molecular Pain

Figure 2

From: New players tip the scales in the balance between excitatory and inhibitory synapses

Figure 2

Relative levels of scaffolding proteins and cell adhesion molecules control the balance between excitatory and inhibitory synapses. NLGs and PSD-95 are used here as an example to demonstrate this concept. Under normal conditions, NLG1 is enriched at excitatory contacts whereas NLG2 is concentrated at inhibitory synapses. PSD-95 retains the majority of NLG1 at excitatory synaptic sites, whereas NLG2 localization is primarily controlled through interaction with an unknown scaffolding protein specific to inhibitory synapses. An increase in the levels of PSD-95 results in a shift of NLG2 molecules from inhibitory to excitatory synapses, presumably through PDZ-mediated binding to PSD-95. The resulting effect is an overall increase in the number of excitatory relative to inhibitory synapses, and thus an enhanced excitatory to inhibitory (E/I) synaptic ratio (for simplicity, changes in synapse number are indicated by changes in the size of the illustrated presynaptic terminals). An altered E/I ratio may result in defects in brain circuitry associated with behavioral and cognitive abnormalities such as those linked to psychiatric, pain response, and learning and memory disorders.

Back to article page